GSAK 301!

Automating GSAK: Getting Started with Macros

This is a basic guide for those who want to use k&Atomation, or “macros”. All
underlined text in this guide is a link to a wete st click on the underlined text to go
directly to that website.

Please note this guide covers automating GSAK. It's desdjte@ be read from start to finish
(although not necessarily in one sitting!), andhesection builds on the laskf you skip to topic
headings without reading through the earlier material, you may miss key points and end up
hopelessly confused. In addition, this guide assumes that you're famiN@h GSAK features
and functions. If you're not familiar with GSAK|gase readsSAK 101 - Getting Startedand
GSAK 201 - Customizing GSAK

Many GSAK features are not addressed here — fornmtion on those features, see the GSAK
help file (in GSAK, go to the “Help” menu, thenaltion “Contents”, or press the F1 key on your
computer keyboard). For help on Macros, in GSAK@the “Macro” menu and click on

“Help”. Those with computer programming experiencay find this guide too basic — if you're
comfortable with scripting, you can dive right using the GSAK help file as your guide.

WHAT ARE “MACROS"?

No, we’re not talking about pasta. “Macro” is taoBpeak for a series of

instructions thaautomate a function or feature GSAK has automation or

“macro” support that allows users to write a sedBE&SAK instructions to a text
file. Users can create a macro file using any éelor, including GSAK's built in macro editor
(in GSAK, go to Macro>Edit/Create to open the masuldor).

WHY USE MACROS?

Macros are used to automate frequently-used feafarg. replace a series of user actions with
one) or to enable more powerful features not abbalan GSAK'’s “point and click” user
interface.

Let’s say you frequently download a Pocket Quargidithe GPX file into GSAK, sort the file by
“Last GPX” date, check to see if caches that weteupdated are archived, filter by distance
from your home, and export the closest 500 caahasnapping program and your GPS

receiver. Rather than going through each of tkesgs manually each time you receive a Pocket
Query, you can use a macro to do all of this wilingle mouse click (i.e. automate a series of
actions).

Or, let’s say you want to simultaneously sort byitiple GSAK columns (e.g. cache owner, date
placed, last found), or use a piece of informatto@SAK for which there is no “special tag”.
These things caonly be done through a macro (i.e. enable more powkgétlires).

ARE MACROSHARD TO USE?

Macros are easy to use - Clyde (GSAK'’s author)@B&K users have created many macros
and made them freely available to all users inGBAK Macro Library

The Macro Library is organized into general categpbased on the end result
of the macro from the user's perspective. If yautdand what you're looking
for in a given category or don't want to browsedhategories, use the forum
search function to search the entire macro library.

Note: There were significant changes in GSAK macrogairsion 6.6, and
additional macro changes in GSAK version 7. If y@uot using the latest version of GSAK,
please download the upgrade from &8AK home pagand install it before attempting to run
these macros. This guide assumes you're using G&&Kion 7 or above.

To use a macro from the Macro Library:

1) Read the Description Click on a topic that interests you and read whatmacro does. If
you're interested in that macro,

2) Check the Macro for Any Required Customization Most macros don't require any
adjustment, but some do (e.g. create a saved bdtfare running the macro for the first time).
The description in the Macro Library forum will ktgbu if you need to make any changes to the
macro for your unique setup. If you want to userracro,

3) Install the Macro (GSAK Version 7). The latest version of the macro is in the last fpo the
topic, and may contain additional features or figesipared to earlier versions.
A. Click on the attached file:

Kai Team Posted: October 22, 2007 05:43 am

VvV 1.05

1) Add today's date to the report.
2) Added a print button.

"OK" copies the output to the clipboard and exits.
"Print" prints the output and exits.

Attached File { Number of 26)
8 countallWaypoints.ask |=——— Antached macro file - click to install the nmclo)

ere) for helpful tips and tutorials. For help on effectively searching the farums, dlick here.

B. The following download screen will appear -€klon “Open”:

File Download

Do you want to open or save this file?

Name: Countaliwaypoints,ask
Type: GSAK File, 2.56K6

From: gsak.net

open | [Save | [__Cancel

[¥] &lways sk befors opening this type o file

harm your computer. If you do nat trust the source, da not apen o1

i "-I “whhile fles from the Intemet can be useful, some files can potentially
\0/
= save this file. 'w/hat's the risk?

Open a GSK file

C. GSAK will start (if it's not already running) antie
following screen will appear. “Install the macro” =
) PP

should be selected. Click on the “Go” button:
D. The macro will be installed. Lool) [T TE

5) Customize (if necessary - see Step:) you're required to change any macro settirgg. (
saved filters, file names or folder paths), operA&and go to the Macro>Edit/Create menu.
Click on File>Open in the macro editor and chodserhacro you just installed. Make any
changes required and save the file.

6) Run the Macro: To use the macro, go to Macro>Run/Manage in tB&Kmenus (or press
Ctrl-M on your keyboard). The “Run Macro” dialegll open, showing a list of all installed
macros:

@ Run Macro EJ@

Installed Macios: | Other |
Seach [e
Double click or press "Enter’* an any macra ta run it [right click to “edit'’] Macros listed: 146
¥ Macio File | Description [ersion Date Last Run Fiun Count | Suther ||
W CountdPaaypoints,gsk § Count all wappaints in all datahases 1.05 10/22/2007 54806 AW 10/22/2007 5:46:46 AM 67 Kai Team
| |CountCoins. gsk | Count TB's with word "Coin* 1.0 B8/29/2007 B:20:33PM 8431/2007 7:25:44 AM 8 lignumagqua
| |Createlog.gsk Create alog nz 10/28/2007 B15134M 10/28/2007 8:22:26 &M 5 Lignumagua
| | DB Timer.gsk Unlenawn 0o 7/8/2007 23257 PM 0 Unlenawn
| |DBChaose.gsk | Unlenown 0o 77842007 3:46:49 AM 0, Unlenown
| |DEChaoselnputDialog.gsk | Unknawn 0o 77842007 3:46:49 AM 0, Unlenown
| |Del Found AND_Archived.gsk delete all wappaints that are both Found AND Archived 1.0 74942007 7:35:34 P 0 Kai Team
| |Del Found OR_Archived.gsk delete all wappaints that are either Found OR Archived 1.1 74942007 7:36:20 P 0| Kai Team
| |Del Not Found AND_Archived gsk Unknown oo 7/8/2007 3:46:43 AM 0 Unknown
| |Disabled More than 1 month gsk | Filter for temp disabled more than 1 month 11 B/22/2007 #6301 P 5/8/2007 5:14:10 PM 4 Kai Team
| |Disabled More than 2 months. gsk | Temp Disabled mare than 2 manths; enter last time since last log in User Data 2, sort lor 1.1 B/22/2007 #:6710PM 84872007 51337 PM B Kai Team
| |DisplayStats.gsk Display last generated statistics 1.0 5/12/2007 8:30:18 &M 0 Clyde
| |Distance gsk | Select all caches within = miles of the cunently selected cache 11 7A0/2007 7:33:43 &M 0 clyde
| [DNF_to_Found.gsk | Unknawn oo 7/8/2007 3:46:52 AM 10/27/2007 4:26:33 PM 1 Unknown
| |drop2ToCode.gsk | Unknown oo 7/8/2007 3:46:52 AM 0 Unknown
|| ExportCSywithFormulas. gsk. | Count Found Logs on the selected cache [e.g. owned caches, export to Excel with forr 1.1 4/22/2007 1000211 AWM 4/21/2007 8:56:37 PM 2 ™
£ >
B ek ‘ B Inatall | 4 Uninstall | 13 Re-aync J X Cancel ‘ ? Hep |

Click on the macro you want to run under “MacreeFénd click on the “Run” button at the
bottom of the dialog (or just double click the natite name). The macro will run and perform
whatever magic it was designed to perform. Foremoiormation on Run/Manage dialog
features, please see the GSAK help file (Help>QuartdJsing GSAK>Macros (automating
GSAK)>Managing and Running).

GSAK users who post macros also maintain themsBleamember that these are fellow users
who voluntarily offer their work to others. If ydwave questions please post in lit@cros
support forum, with a link or reference to the postacro.

Note: If this is a macro you’ll use often, you may wémadd it to your tool baiNow it will
only be one mouse click away!

ARE MACROSHARD TO CREATE?

Whether you'll find creating a macro easy or haggehds on the complexity of the tasks that
you want to automate. It also depends on how natteimtion you pay to details, your patience
and your aptitude for logical thinking.

Many macro writers start off automating a fairlygsask (we’ll give examples below), or they
begin by studying, copying pieces of, or “tweakirginacro someone else wrote. All of the
macros in the GSAKacro Librarymay be freely copied and edited. A great way &orldhow
macros work is to look at how other users have dbimgs intheir macros.

WRITING YOUR FIRST MACRO
Basic Macros

In its simplest form, a macro can be a single lidast to get your feet wet, let’s write and run a
simple macro. This macro will tell GSAK to pauskawit’'s doing and display a dialog window
with a message we’ve created (in this case, thesageswill be “My first macro is a success!”).

First, in GSAK, go to Macro>Edit/Create. Now tyfme copy and paste) the pink text exactly as
shown here (it won’t be pink in the macro editdhat’s OK):

PAUSE Msg="My first macro is a success!"

Now go to the File menu in the macro editor andosieo’Save and Run”. A dialog box will pop
up asking you to name your macro. Type “MyFirstkéédanto the File Name box (in place of
“New Macro”) and click on the “save” button:

Save jn; ||.i' b acroz ﬂ ﬁi v
_Bookmark, kxt BackwardHinks, kxk
_ZacheRaid. kxt Bob_Exports,kxt
_Distance.txt Cachemate_states, bxl
_Select 950, kxt ZancelSearch, bxt
_Spoilerayvnc.kxt ChronoHunks, Ext
_Summaty bxk CleanUp.bxt
|

3
File name: |M_|,|Firsth-1 acro|
Save as hupe: Tex?files [bxt] ﬂ Cancel

GSAK will save and run the macro, and a dialog wimndvill pop up, showing our message:

My first macro is a success!

e | w Skipnedcommand | @R Stop maco now

Click on the “Continue” button to finish the macikou’re now officially a GSAK macro writer!

Planning a more complex macro — the logical process

The first step in writing a more complex macroaskearly define what it is you want to do.
This means not only the final outcome, but alsoséguence of steps in logical order —i.e. “first
things first”.

If you want to find a geocache (the final outconyey first need to get in your car and drive a
specific route, with various turns along the wadne(steps). In planning a cache hunt, you
wouldn’t start by thinking about where you'll loéér the cache once you got there. First, you
think about how to get from where you are to theheaand only then do you think about where
you'll look for the cache.

Writing a macro involves a similar, step-by-stepgass. If you miss a turn along the drive you
won’'t end up at the cache, and if you leave a stgf a macro you won't get the desired
outcome!

To get started, we're going to plan and write atreély simple but useful macro. The outcome
of this macro is to select the 200 caches closesigiven point for viewing, sending to a GPS
receiver, or exporting to a file or other prograerg(a mapping program or Cachemate). The
logical steps to get this result are:

1) Select the database that contains the desiredsache

2) Sort the caches by their distance from your sedelcteation
3) Select the first 200 caches (those closest to lgmation)
4) Filter for the selected caches.

This macro is similar to performing the followingt@ns from the GSAK menus:

1. Select a database (Database>Select)

2. Sort the database by distance from the curoeatibn (click the “Miles” or “Kms” column
heading)

3. Clear all user flags (User Flags>Clear All Uskgs)

4. Set user flags for next nn (User Flags>Set fextn)

5. Set a filter on user flags = set

However, one big difference is that the macro tisesmacro flag” to set and filter on, rather
than the user flag. This means that your previosstyuser flags are not affected by running the
macro.

The GSAK Macro Editor

Although you can use any plain text editor to watmacro (e.g. Windows Notepad), GSAK has
a built-in macro editor that’s convenient to usedese it’'s integrated with GSAK. You can test
run your macros from the macro editor (File>Save Ron or CTRL-R) and, if the macro
produces an error, you can press a button to réduime macro editor at the line where the error
occurred.

To create a new macro in the GSAK macro editoG8AK go to Macro>Edit/Create.

Writing a macro — using the macro help files

When writing a macro, the GSAK macro help fileikela foreign language dictionary — it tells
you how to translate what you want to do into tethad GSAK understands.

To access the macro help file, in GSAK go to Mattelp.

Just like any language, there are several categofigerms in the macro language. These are
highlighted as links at the top of the Macro Helpd clicking on one of the highlighted links
will take you to the list of available terms, thdefinitions, and their syntax (the options
associated with that term).

Don’'t worry about memorizing all of this informatismow (there’s so much you can do in
GSAK macros that it can make your head spin). Wg&/ke you an overview of the general
terms here, but you can always refer back to therMBlelp if you forget what something is.
We'll also explain how to actually use some of the=rms in our example (further below). That
said, here are the types of things you'll findhe tmacro help (your macro language dictionary):

Commands & Functions— tell GSAK to take action! These are the “verbkthe

macro language (computer programmers will tell gwere’s a difference between
commands and functions and they're right, but wa'tnget into that here). To see all of
the commands available in GSA#ick hereand then click on “command summary”.
For a list of functions available in GSAKlick hereand then click on “function
summary”.

Variables: are the things you take action on (the “nounsthef macro language). There
are several types of variables:

User Created Variables:are terms that you define to store informatiomesifor
use in the macro, or for use in the result. Allrugeated variables start with a
dollar sign ($) and can be named almost anythingwant (e.g. $MyVariable is a
valid user created variable), as long is it staite $. The only exception to
freely naming user created variables is when thatenis reserved for a database
or system variable:

Database Variables:are predefined terms that represent the informdtiate)
stored in GSAK. All Database variables begin Witl_". For example, the GC
or other unique code for a cache or waypoint igestin the database variable
$d_Code. For a list of database variables avaii@abGSAK, click here You
cannot use $d_ to nameuser created variable because that prefix is reserved for
database variables.

System Variables:are predefined terms that represent informatiahekists in
your computer system when GSAK is running, butidetsf the database itself
(i.e. it's not waypoint or cache information). Alstem variables start with “$_".
For example, the currently selected databaseriedsto $ CurrentDatabase, and
the place on your computer where you installed G$Astored in the $_Install
system variable. For a list of all available systeariablesclick hereand then
click on “system variables”. Again, you cannot tise $_ prefix for aiser

created variable because it's reserved for system varsable

Expressions Expressions allow to you perform mathematicdbgical actions or tests
on variables and data. For example, expressidéms gbu to add, subtract, multiply,
compare (equal to, not equal to, greater than tkesy or logically combine (AND, OR,
NOT) different terms. To see the expressions alsglin GSAK click hereand then
scroll down to “Variable Operands”, “Relational @g@rs” and “Logical Operators”
(don’t worry, you don’t have to be a mathematicidespite the esoteric names!).

Enough already! Let's write a macra

OK, let’s start with the example we mentioned ifafping a macro”, above. Remember that we
want to show the nearest 200 caches to our logaimhthe steps are:

1) Select a database,

2) Sort the database by distance from the currentitota
3) Select the first 200 caches (those closest tooitegibn),
4) Filter for the selected caches.

If you haven't already done so, open the GSAK magclitor (in GSAK, Macro>Edit/Create) and
let's get started. Note: The actual “macro co@estructions) are shown in this guidegimk to
make them easy to distinguish from the accompangxpdanations. You can enter each line as
we go along, or you can copy and paste the fin@rongshown at the end of this discussion) into
the Macro Editor.

Step One Itis good practice to include comments in ymacros. A comment is any line that
starts with the # character, and any line thatstaith # is ignored by GSAK. So, the first line
of our macro is a comment that reminds us whatrttaisro does:

Macro to select a number of caches that are closest to a location

You can use comments anywhere in the macro thalik@uand we highly recommend it!
Macros that are “well documented” (have good conis)dmelp you to “debug” (fix errors in)
your macro, and they help you and others undersiahahat the macro is doing (it's amazing
how quickly you can forget what you did, or why ydid it, when you look back at a macro you
wrote).

Step Two: Now that we know what this macro is intendeddpwle need to select a database
that has the caches we're interested in. Foptipose of this lesson, we’re going to select the
“Default” database because GSAK always has a “Défdatabase. The command to select a
database is:

DATABASE Name="Default" Action=Select

The first part of that line (DATABASE) is the comndj and tells GSAK that we want to do

something with a database. The second part (Natebs)JGSAKwhich database you want to
act on. The third part (Action=) tells GSA#hat you want to do with that database. In this
case, we're telling GSAK to select, or switch te tatabase named “Default”.

If you go to the macro help file (Macro>Help, odiae click herg, click on the “Command
Summary” link, and then click on “DATABASE”, you’ee the following “syntax” for the
DATABASE command:

DATABASE <Name="Database"> [<Action=selec{create|delete>]

In the Macro Help files, the command is given fitgually in capital letters. “Tokens”
supplement the command, and are surrounded bysrdtdinclude these <> when creating a
macro) and items in square brackets (]..]) arecodi Valid options for tokens are separated by
a | (a vertical bar). All commands, tokens, anchpeaters araot case sensitive (i.e.
capitalization is unimportant).

In this case, the command is DATABASE and mustisluded. NAME is a required token and
“database” (the name of your actual database) beustcluded in double quotes (which is why
it's quoted in the help file). Action (in the sape brackets) is optional — you can include it or
not. If Action is not included, GSAK will assumséiect” — this assumed default for an optional
token is always underlingd the help file. Because the default actiontfer DATABASE
command is “Select”, we could have left the Actidnken off and gotten the same result.

Step Three: Now that we'’ve told GSAK which database we wéuat thacro to work with, we
have to sort the caches in that database by desfamm the current location, from closest to
farthest. To do that, we enter:

SORT By="distance” Sequence=A

SORT is the command, By= is the GSAK column we warsort on (see theORTcommand in
the help file for a list of column names) and Sempa= tells GSAK whether we want to sort
from lowest to highest (i.e. Ascending = A) or heghto lowest (i.e. Descending = D).
Sequence= is optional, and the default is ascer{@jgo we could have left that token off and
gotten the same result.

Step Four. OK, we’re in the right database and we’ve sobgdlistance. Now we’re going to
ask the user how many caches they want to seldet.next line in our macro is:

INPUT Msg="How many waypoints do you want to select" Default="200"

The INPUT command allows the user to “input” (typginformation. It's a very handy
command when you want to allow for different ansatera question. Msg= is the message
token - whatever you put after Msg= will appeartio& screen when the macro is run —i.e. it tells
the user what they'’re being asked (just like th&JBE command in the first macro you wrote,
above, except that INPUT allows the user to resporidefault= is optional. Default= tells

GSAK what value to use if the user just presse®ttter key without typing an answer. In this
case, we're telling GSAK to use 200 if the userstteenter a number. Another option for the
input command is “BROWSE”, which allows the usebtowse (use point and click) for either a
file or a folder, but we're just asking for a numibere, so we won't use that option.

Step Five The INPUT command collects information typednrthe keyboard and creates a
default variable called $Result (you can tell tiygut command to assign the answer to some
other variable, using the VarName option, but we'tdeoeed to do that here).

Because it's accepting information typed from teghoard, the INPUT command assumes that
the result is what is called a “string” variablg.string variable is any combination of letters,
numbers and symbols and is treatetessby GSAK. A computer can’t count or perform other
math on text, so the next step in our macro ield3SAK to convert that text “200” to the
number 200, and to assign it to a user created variableercalled $Number (this could be
called $Cucumber if you like, but it makes senseame variables to represent what they are).
The next line in our macro is:

$Number = Val($Result)

There are two parts to this line. The first pNumber =, tells GSAK to create a variable called
$Number and store whatever comes after the equmlirsithat variable. The second half of the
line, Val($Result) is using the “Value” function ¢onvert a string (text) into a number (value).
In this case we're saying “covert the variable $Resvhich came from the INPUT command)
into a number.

Step Six Since we want to count the caches that are sidseur location, we now need to tell
GSAK to move the “pointer” (the thing that tells & which cache it's on in your database) to
the top of the sorted list of caches (the cacheaseaur location). The next line is:

GOTO Position=Top

The GOTO command tells GSAK to move the “pointedand in a database. The options are:
“top” (the first cache in the current list), “bottd (the last cache in the current list), “next’dth
very next cache below where the pointer is now)‘and (some number of caches below the
current cache — e.g. “10” would move the pointavdd0 caches from the current spot).

Step Seven As mentioned above, we're going to use the “Mdéag”, which functions just
like user flags, but only within a macro. Using tdacro Flag leaves any previously set user
flags untouched. Before we set the macro flagshawe to make sure that there aren’t any
macro flags already set, so our next line is:

MacroFlag Type=Clear Range=All
The command is MacroFlag, Type= is the token thiéd GSAK what we want to do with the
macro flag (in this case, clear it), and Rangels B85AK which macro flags we want to clear (in

this case, all of them).

Step Eight Now that we know that the macro flags are alaipwe want to set them for the
number of caches that the user requested (vialNBREIT command). Our next line is:

MacroFlag Type=Set Range=$number

This is the same command as in Step Seven, butvene telling GSAK to Set the macro flags
for the range that's equal to the variable $nunflEmember that $number is the numeric value
of the answer the user gave in response to the TNg<hmand!).

Step Nine Finally, we want to set a filter for those casliieat have been marked with the
macro flag:

MFILTER If=$d_MacroFlag

MFILTER is the command that tells GSAK to set &filfrom within a macro. It's similar to
going to Search>Filter in the GSAK menus, excegt ylou can filter orany database variable
(see the Macro>Help for a list of ahtabase variables you can use). In this case, we're telling
GSAK to filter on the database variable $d_MacrgFHahich is the place where GSAK stores
the information about whether or not a cache iggéal.

That's it! The entire macro looks like this (yoanccopy and paste this into the macro editor):

Macro to select the first nn caches in a filter

DATABASE Name="Default" Action=Select

SORT By="distance” Sequence=A

INPUT Msg="First nn waypoints to select" Default="200"
$Number = Val($Result)

Goto Position=Top

MacroFlag Type=Clear Range=All

MacroFlag Type=Set Range=$number

MFILTER If=$d_MacroFlag

Once you have all of that in the macro editor,@&ite>Save and Run. Give the macro a name
(how about “SelectNN”, without the quotes) andklike “Save” button. GSAK will
automatically run the macro and when it finishesjrydatabase will be sorted by the caches
closest to your selected location, and filteredier first 200, ready to export or send to your
GPS receiver!

Testing and “Debugging a Macro”: No matter how much experience you have writing
macros, the odds are that there will be “bugshmmacro when you first write it (usually these
are typographical errors, or they could be ernoithe use of a command, function or variable).
GSAK reviews the macro code before it starts toitusnd is smart enough to catch these kinds
of errors and alert you to the problem. This iéecl'debugging” the macro, and is a necessary
step in the macro creation process.

As an example, let's say that we made a typograpkitor when entering our macro and
entered the first line (after the comment) likestfthe second A is missing from the DATABASE
command):

DATBASE Name="Default" Action=Select

In testing our Macro, GSAK will discover this errand pop up an error message that looks like
this:

@ Current Macro: C:\Program FileshGSAK kM acroshSelectt M. bt

Errar in kacro at line: 3
DATBASE Mame="Default” Action=Select

Error=» Macro command iz invalid: DATBASE

tlacro will now abort

\/ k. El iew enar lag Edit Macra

GSAK is telling us that our current macro (“Seleitikt”) has an error in line 3. It shows us the
line with the error (‘DATBASE Name=..."). It tellss what the error is (DATBASE is not a
valid command, because the valid command is BBASE). And it stops the macro from
running (“Macro will now abort!”) so that our inudlcommand doesn’t cause any problems.

The beauty of using the built in macro editor igtthf you click on the “Edit Macro” button,
GSAK will take you to the macro editor and placeiyoursor on the line with the error, so that
you can easily make the correction, save and rir@imacro for a second test. This may not
seem like a big deal with an error in the thiree]ibut if the error is in line 73, this is indeed a
treat!

The DEBUG command GSAK also has a built in feature to help tracge®rsin macros — the
DEBUG command. The Help file syntax looks likesthi

DEBUG <STATUS=on|off> [<Height=nnn>] [<Width=nnn>] [<Left=nnn>] [<Top=nnn>]

The DEBUG command allows you to step through a mamme command at a time. Each
command in the macro will display a dialog showilng command and the value of all variables,
just before the command is run. From this dialog lgave the option to accept the command,
skip the command, or stop the macro. You can ttEBDG on and off anywhere in the macro
by using the corresponding STATUS token (“on” off"p

Height, Width, Left and Top are optional and allgau to change the size and position of the
debug dialog. All measurements (nnn) are in scpdesis.

It's a good idea, especially when you're first ldag macros, to include DEBUG Status=on at
the beginning of any new block of code you wri@nce you have the macro working as
expected, you should delete the DEBUG commandh@ange the status to “off”) so that your
macro doesn'’t stop at every step!

Using a test databaseThe macro we used above is known as “non-desiaidiecause it
doesn’t make any permanent changes to your databdts® safe to test a non-destructive macro
on “real” data because even if you mess it upgtBero harm done (in this case, just cancel the
filter and everything is back the way you started).

However, the macro language is very powerful and can led ts do things that are

“destructive” — replacing database variables (#ehe data) or deleting caches or even entire
databases! We therefore recommend that you caeade database in GSAK called “Test” and
copy (don’t move) some waypoints into the test lbase, then use this test database whenever
you're debugging a macro. If your macro accidéyniletes all of the caches in your test
database, there’s no harm done, because that'stileipurpose in life. You can just copy some
waypoints back into the test database and stam &igaagine your horror if you accidentally
delete all the waypoints in a “real” database)!

OTHER USEFUL MACRO CONCEPTS AND TIPS

Add a Macro to a button: In the Customize Speedbar window (8&8AK 201 - Customizing
GSAK for more detailed information on customizing thBAK SpeedBar), the next to the last
category is “Macros”. If you click on that categoyou’ll see a series of buttons labeled “All
Macros” and Macrol, Macro2, etc. If you downloactieate a macro that you'll use often,
remember that you add that macro to a button, dnag it to the Speedbar, and your customized
instructions to GSAK are just one click away!

If you assign your macros to buttons and then hddAll Macros” button to the SpeedBar, the
All Macros button acts like a drop down menu, allogvyou to select any of the assigned macros
from a single button! The All Macros button al$w®/s more descriptive text for each macro
than you can fit on a macro button.

| nteracting with the user. We used two ways of interacting with the ushe AUSE and
INPUT commands) in our example macros, but thezesaveral others:

SHOWSTOP & SHOWSTATUS: The SHOWSTOP command shows a small stop
dialog when a macro is running. You would usualbcp this as the first command in a
macro with many commands. This allows you to teatgrthe macro by clicking on the
stop button. If you don’t use the DEBUG command,recommend that you include the
SHOWSTOP command at the beginning of any new myautre writing, since it will
give you a way out if you write your way into arfinmte loop (where the computer keeps
processing a command that has no end, and youtba®aminate the program or restart
your computer to get out of it!). Once the masrdebugged (functioning the way you
want it to), you can delete the SHOWSTOP command.

SHOWSTATUS is similar, but it shows you GSAK'’s pregs in processing a large
amount of data (i.e. doing something with a largeadase). See the Macro Help file for
more information on using the SHOWSTATUS command.

CHOOSE: CHOOSE is similar to INPUT except that it alloysu to offer the user pre-
defined choices. It's useful to avoid typograph@maors and also to limit the user’s
choices to a set of options (i.e. the user capé ty something that doesn’t exist or make
sense).

SHOWFORM: The SHOWFORM function allows macro writers teate forms very
much like those in GSAK. You can add text labaistfuctions, prompts, questions,
etc), various controls (buttons, check boxes, clistbox, combo box, date box, edit
box, file box, folder box, radio buttons, memo ha)d images. You can change the
colors of your form and control the layout of d#ments. For more information on
ShowForm, go to Macros>Help>Commands and Funcaosscroll down to and click
on “ShowForm”.

Using conditional statements, loops and subroutine¥here are several commands in GSAK
that allow you to test something before proceedindgp repeat an action or set of actions
without retyping the same code over and over again:

IF/ELSE/EndIF : command allows you to create a conditional brangfour macro. IF
something is true, do this. ELSE (if somethingas true), do that.

WHILE/ENDWHILE : command allows you to continue to perform a $etctionsas
long as a condition is true. A common use for WHILE istealk” through a set of
caches one-by-one, testing each cache (e.g. bees found), until you reach the end of
the list. The syntax for that is (the system Jalges EoL tells GSAK when it's at the
“End of List”):

GOTO Position=Top
WHILE not($_EoL)
IF [condition]
[do something]
ELSE
[do something else]
EndIF
GOTO Position=Next
EndWhile

GOSUB: The BeginSub, EndSub and GOSUB commands altawtg create a set of
macro code (a subroutine) that you can use moredhee in the macro. It also allows
you to segregate a complex set of code from theofg®@ur macro, to make it easier to
follow and debug.

Please see the Macro Help for more informationingithe IF, WHILE and GOSUB
commands.

That's enough for a “Getting Started” guide (sorhgau might say it's too much!). Macros can
seem daunting at first, but like so many thingbf@) they make sense once you start using them.

Remember start by automating a relatively easy task ostoylying, copying pieces of, or
“tweaking” a macro someone else wrote. All of thacros in the GSAKlacro Librarymay be
freely copied and edited, and they are a greattwdgarn how macros work!

